

Vector Analysis Physics Lab I

Name:

A: Vector Exercise I

You should be provided with a ruler, protractor and calculator. Consult with your lab instructor if you do not have these materials.

Graph: On <u>Graph Sheet A</u> draw the two vectors \vec{A} and \vec{B} using the following data $(A = 7 \ cm, \theta_A = 30^\circ)$ and $(B = 4 \ cm, \ \theta_B = 150^\circ)$. Add these vectors graphically for the vector sum $\vec{C} = \vec{A} + \vec{B}$, by using the tip-to-tail method. Measure the length C and direction θ_C of vector \vec{C} .

 $C = \underline{\qquad}, \ \theta_C = \underline{\qquad}.$

Next, draw the x and y components of \vec{C} : (C_x, C_y) . Measure the length of each of the components.

 $C_x =$ _____, $C_y =$ _____.

Calculate: From the original data for \vec{A} and \vec{B} , compute their x and y components: (A_x, A_y) and (B_x, B_y) .

$$A_x = \underline{\qquad}, A_y = \underline{\qquad}.$$
$$B_x = \underline{\qquad}, B_y = \underline{\qquad}.$$

Add these together for alternative values of the x and y components of \vec{C} :

 $C'_x = A_x + B_x = \underline{\qquad}.$ $C'_y = A_y + B_y = \underline{\qquad}.$

From these values, calculate alternate values for the length C' and direction θ'_C of \vec{C} .

$$C' = \underline{\qquad}, \ \theta'_C = \underline{\qquad}.$$

B: Vector Exercise II

Graph: On <u>Graph Sheet B</u> draw the two vectors \vec{A} and \vec{B} using the following data: $(A_x = -4 \ cm, \ A_y = +3 \ cm)$ and $(B_x = +4.5 \ cm, \ B_y = -4 \ cm)$. Add these vectors graphically for the vector sum of $\vec{C} = \vec{A} + \vec{B}$, by using the tip-to-tail method. Measure the length C and direction θ_C of vector \vec{C} .

 $C = \underline{\qquad}, \ \theta_C = \underline{\qquad}.$

Next, draw the x and y components of \vec{C} : (C_x, C_y) . Measure the length of each component.

 $C_x =$ _____, $C_y =$ _____.

Calculate: Add the x and y components of \vec{A} and \vec{B} for alternative values of the x and y components of \vec{C} :

$$C'_x = A_x + B_x = \underline{\qquad}.$$

 $C'_y = A_y + B_y = \underline{\qquad}.$

From these values, calculate alternate values for the length C' and direction θ'_C of \vec{C} .

 $C' = \underline{\qquad}, \ \theta'_C = \underline{\qquad}.$

C: Vector Exercise III

Graph: On <u>Graph Sheet C</u> draw the two vectors \vec{A} and \vec{B} using the following data: $(\theta_A = 135^\circ, A = 5 \ cm)$ and $(B_x = +1.0 \ cm, B_y = -8 \ cm)$. Add these vectors graphically for the vector sum of $\vec{C} = \vec{A} + \vec{B}$, using the tip-to-tail method. Measure the length C and direction θ_C of vector \vec{C} .

$$C =$$
_____, $\theta_C =$ _____

Next, draw the x and y components of \vec{C} : (C_x, C_y) . Measure the length of each component.

 $C_x =$ _____, $C_y =$ _____.

Calculate: Add the x and y components of \vec{A} and \vec{B} for alternate values of the x and y components of \vec{C} :

$$C'_x = A_x + B_x = \underline{\qquad}.$$

 $C'_y = A_y + B_y = \underline{\qquad}.$

From these values, calculate alternate values for the length C' and direction θ'_C of \vec{C} .

 $C' = \underline{\qquad}, \ \theta'_C = \underline{\qquad}.$

D: Vector Exercise IV

Graph: On <u>Graph Sheet D</u> draw the two vectors \vec{A} and \vec{B} using the following data: $(A_x = +10.5 \text{ cm}, A_y = +3\text{cm})$ and $(\theta_B = 235^\circ, B = 4 \text{ cm})$. Add these vectors graphically for the vector sum of $\vec{C} = \vec{A} + \vec{B}$, using the tip-to-tail method. Measure the length C and direction θ_C of vector \vec{C} .

 $C = \underline{\qquad}, \ \theta_C = \underline{\qquad}.$

Next, draw the x and y components of \vec{C} : (C_x, C_y) . Measure the length of each component.

 $C_x =$ _____, $C_y =$ _____.

Calculate: Add the x and y components of \vec{A} and \vec{B} for alternate values of the x and y components of \vec{C} :

$$C'_x = A_x + B_x = \underline{\qquad}.$$

 $C'_y = A_y + B_y = \underline{\qquad}.$

From these values, calculate alternative values for the length C' and direction θ'_C of \vec{C} .

 $C' = \underline{\qquad}, \ \theta'_C = \underline{\qquad}.$