(1) [(p/180)×(a),(b),(c),(d), and (e)]® 0.524, 0.995,1.571, 6.283, and 7.33. respectively. As fractions of p, these are 0.167, 0.317, 0.5, 2.0, and 2.33 respectively.
(3) The subtended angles of the Moon (qM) and the Sun (qS are, respectively (using text data):
qM  =  2×1.74×103/384×103  =  9.1 mrad
qS  =  2×6.96×105/1.5×108  =  9.3 mrad
(5) D  =  R q  =  380,000 km×1.8×10-5  =  6.8 km
(6) 1800 rev/min ×1 min/60 s×6.2832 rad/rev  =  189 rad/s
(7) The speed of a point on the rim is v  =  wR  =  189 s-1×0.35 m/2  =  33 m/s. The acceleration is centripetal, given by ac  =  v2/R  =  (332/0.175) m/s2  =  6200 m/s2.
(11) Distance per revolution is 2p R. Now 15×2p R  =  4.5 m, and solving for R gives R  =  4.78 cm, so the diameter is D  =  2×4.78 cm  =  9.5 cm.
(15) The angular speed of the Earth is given by w  =  6.2832/(24×3600) rad/s  =  7.27×10-5 s-1.
(a) At the equator veq  =  w RE  =  7.27×10-5×6.38×106 m  =  460 m/s.
(b) At latitude l other than zero, R =  RE cos l. Thus for the arctic circle, Va.c.  =  7.27×10-5×6.38×106×cos(66.5°)  =  180 m/s.
(c) As in (b), get (using cos(45°),  330 m/s
(17) 160 rpm  =  16.8 s-1, 280 rpm  =  29.3 s-1.
(a) The angular acceleration is a  =  Dw/Dt  =  (29.3 - 16.8)s-1/4 s  =  3.1 s-2.
(b) After 2 s, the angular speed in rad/s is (16.8 + 29.3)/2  =  23. At this time, the centripetal acceleration is given by ac  =  aradial  =  w2 R  =  232×35×10-2  =  190 m/s2. The tangential acceleration is given by at  =  (vf - vi)/Dt  =  R (wf - wi)/Dt  =  (10.3 - 5.9)/4 s  =  1.1 m/s2
(21) 15,000 rpm  =  1.57×103 rad/s,  a  =  1.57×103/220 s  =  7.14 rad/s2. The total angle traveled in this 220 s is given by q  =  w2/(2a) from the kinematics for constant angular acceleration. Thus q  =  1.73×105 rad×1 rev/(2p rad)  =  2.75×104 revolutions.
(29) F  =  55×9.8 N  =  540 N. The torque from one pedal is t  =  F×d  =  540×0.17 m  =  92 N m. Since she can put her weight on only one pedal at a time (not a racing bike where one can also pull up with the `caged' foot), this is the answer.
(31) The 35 N force and the 20 N force yield a torque in the same direction, call it +. The moment arm of the 35 N force is 0.1 m and that of both the others is 0.2 m. Thus the torque from the three indicated forces is given by t  =  [35×0.1 + (30 - 20)×0.2] N m  =  1.5 N m. The friction (not shown in the figure) provides a torque of -0.4 N m, the negative sign being necessary since friction opposes the rotation. Thus the net torque is (1.5 - 0.4)N m  =  1.1 N m.
Note: The angles indicated in the figure are irrelevant-a ``confusion'' factor to see if you understand the concept of torque.
(34) The moment of inertia of a sphere, for an axis through the center, is given by 2 M R2/5, as seen from Figure 8-20, pg 223 of the text. Thus I  =  2×12.2 kg×0.6232 m2/5  =  1.89 kg m2.
(35) The mass of the hub can be ignored because its radius is small, and the moment of inertia is proportional to radius squared.
I  =  M R2  =  1.25 kg×0.33352 m2  =  0.139 kg m2.
(51) Energy at any time is given by I w2/2. 8000 rpm  =  838 s-1. Thus get 3.15×10-2×8382/2 J  =  1.11×104 J.
(57) Angular momentum is given by M R2 w  =  0.210 kg×1.102 m2×10.4 s-1  =  2.64 kg m2/s
(59) Conservation of angular momentum gives Ii wi  =  If wf or wf  =  Ii wi/If. Since the w's in rad/s are proportional to rev's in s, the final number of rev/s is just (1.33 rev/s)/3.5  =  0.38 rev/s


File translated from TEX by TTH, version 1.95.
On 25 Oct 1999, 11:29.