(1) a  =  v2/r  =  5002 m2/s2/6×103 m  =  41.7 m/s2
No. of g's is 41.7/9.8  =  4.25 g. The pilot would feel this plus an additional 1 g of his weight.
(3) v  =  2pr/T  =  6.283×1.5×1011 m/3.15×107 s  =  2.99×104 m/s
|ar|  =  v2/r  =  (2.99×104 m/s)2/1.5×1011m  =  6×10-3 m/s2.
The force is F  =  m ar  =  5.98×1024×6×10-3 N  =  3.6×1022 N.
The force is exerted by the sun; i.e., the universal gravitational attraction between the earth and sun.
(5) The tension force required to maintain circular motion of M is provided by the string. Being constant throughout the length of the string, this tension is just m g (seen by considering a free body diagram of the hanging mass). The centripetal acceleration is a  =  v2/R, which by Newton's second law applied to mass M gives F  =  T  =  m g  =  Mv2/R, from which the speed of the puck is determined to be v  =  (m G R/M)1/2
(9) A general solution is here provided (for any bank angle q, including the stated case of q  =  0, corresponding to a level curve).
Letting the x-axis be toward the center of the curve, and y perpendicular to x, the x and y components of the forces yield
n sinq + nms cosq  =  m v2/R and n cosq - nms sinq - m g  =  0
(for an assumed friction force acting ``inward''.) Solving for the coefficient from this pair of equations yields
ms  =  [v2 cosq/(Rg) - sinq]/[cosq +v2 sinq/(Rg)]
For the indicated parameters, v2/(Rg)  =  0.84, which for q  =  0 is the answer to the stated problem.
(15) Since the units of v are m/s, and the unit of r is m, the units of the centripetal acceleration are (m/s)2/m  =  m/s2.
(17) From the expression in (9) above, one obtains tanq  =  v2/(Rg) when ms  =  0. From this, the design speed of the curve is computed to be v  =  (R g tanq)1/2  =  12.1 m/s. Since the car's speed is greater at 25 m/s, a friction force acting on the car toward the center of the curve is necessary. The expression in (9) can be used to solve for the friction force. Using v  =  25 m/s, the parameter v2/(Rg)  =  0.911, which when substituted into the equation yields ms  =  [0.911 cos(12°)-sin(12°)]/[cos(12°)+0.911 sin(12°)]  =  0.585.
From considerations of (9), the normal force is given by n  =  mg/(cosq-ms sinq) which yields n  =  1.37×104 N. Thus the friction force is f  =  ms n  =  0.585×1.37×104 N  =  8×103 N
(25) F  =  GMm/r2  =  GMm/(R+alt)2  =  [6.67×10-11×5.98×1024×1400]/[6.37×106 + 1.28×107]2 N  =  1.52×103 N
Alternatively, F  =  m g/9  =  1400×9.8/9  =  1.5×103 from the inverse square law of universal gravity; i.e., distance is tripled.
(27)g¢  =  GM/R2, g  =  GME/RE2, so g¢/g  =  MRE2/(ME R2)  =  1/2.52  =  0.16, giving g¢  =  0.16 g  =  1.6 m/s2
(35) Let the masses be located as follows: one at the origin, one at x  =  0.6 m, y  =  0, one at x  =  0.6 m, y  =  0.6 m, and one at x  =  0, y  =  0.6 m. The net force acting on the mass at the origin due to the other three involves the vector sum of three forces-one strictly along x, F1, one strictly along y, F2, and the last one toward the center of the square formed by the masses F3. Each is of the form F  =  Gm2/r2 where r  =  0.6 m for both F1 and F2, and r  =  0.8485 m for F3. Adding the components yields Fx  =  F1 + F3,x  =  1.04×10-8N + 3.68×10-9N  =  1.41×10-8N  =  Fy. The magnitude of the net force is F  =  (Fx2 + Fy2)1/2  =  2.0×10-8 N and the direction of the net force is toward the center of the square.
(39) v  =  (GM/r)1/2  =  [(6.67×10-11*5.98×1024/(6.37×106 + 3.6×106)]1/2 m/s  =  6.3×103 m/s
(41) a  =  v2/R  =  4.9 m/s2  =  (2pR/T)2/R which yields T  =  (4p2R/4.9)1/2  =  11 s
(43) T  =  2p[r3/(GM)]1/2  =  6.283×[(1.74×106+1×105)3/(6.67×10-11×7.35×1022]1/2 s  =  7.1×103 s  =  2.0 h.
(45) For the inner radius r1  =  7.3×107 m; likewise the outer is r2  =  1.7×108 m.
Thus T1  =  6.2832  [(7.3×107)3/(6.67×10-11×5.69×1026)]1/2  =  5.6 h and similarly, T2  =  19.9 h. Alternatively, since the ratio of r2 to r1 is 2.33, T2 must be greater by 2.333/2.
(67) Will happen for Mm/rm2  =  Me/re2 where re + rm  =  r, the distance between earth and moon centers; i.e., r  =  3.84×108 m. These yield a quadratic equation in re:
(Me-Mm)re2 - 2Me r re + Me r2  =  0. Solving by the quadratic formula gives re  =  r [(me +/- (Me Mm)1/2)/(Me - Mm)]
Substituting the indicated parameters yields
r  =  3.46×108 m (using the negative sign).
(69) Wapp  =  m (g + a)  =  m g + m a, so a  =  9.8 (80 - 60)/60 m/s2  =  3.3 m/s2.


File translated from TEX by TTH, version 1.95.
On 20 Sep 1999, 12:50.