(1) F  =  m a  =  60 kg×1.15 m/s2  =  69 N
(3) F  =  9 ×10-3 ×104×9.8 m/s2  =  880 N
(5) (a) Fg,E  =  mg  =  66 kg×9.8 m/s2  =  650 N
(b) Fg,M  =  66 kg×1.7 m/s2  =  110 N
(c) Fg,Mars  =  66 kg×3.7 m/s2  =  240 N
(7) a  =  v/t  =  (90,000/3600/8)m/s2  =  3.13 m/s2
F  =  m a  =  1100 kg ×3.13 m/s2  =  3400 N (direction opposite the velocity)
(9) The tension force is T  =  mmin (a + g), so mmin  =  T/(a + g)  =  22 N/[(4.5 + 9.8)m/s2]  =  1.5 kg
(17) amax  =  Tmax/m - g  =  (21750/2100 - 9.8)m/s2  =  0.56 m/s2
(21) v  =  (2 g h)1/2  =  9.39 m/s
a  =  v2/(2d)  =  9.392/(2·0.7)m/s2  =  63 m/s2
Favg  =  m a  =  45 kg×63 m/s2  =  2800 N
This force adds to his weight of 440 N to give a total of 3300 N
(23) The ideal (frictionless) pulley simply changes the direction of the tension force (equal to the weight of the hanging mass). In all cases, the normal force of the table is n  =  70 N - W
(a) 70 N - 30 N  =  40 N, (b) 70 - 60  =  10, (c) zero, since 90  >  70
(27) (a) F1x  =  -10.2 N,  F1y  =  0, F2x  =  0, F2y  =  -16.0 N
Fx  =  F1x + F2x  =  -10.2 N, Fy  =  F1y + F2y  =  -16.0 N
F  =  (Fx2 + Fy2)1/2  =  19 N
tan-1(Fy/Fx)  =  tan-1(-16/-10.2)  =  57.5°
but in 3rd quadrant, so angle of force is 180 + 57.5  =  237°
a  =  F/m  =  19 N/27 kg  =  0.70 m/s2, same direction as the force.
(b) F1x  =  10.2 N cos(-30°)  =  8.83 N
F1y  =  10.2 N sin(-30°)  =  -5.10 N
F2x  =  0, F2y  =  16 N, Fx  =  F1x + F2x  =  8.83 N
Fy  =  F1y + F2y  =  10.9 N, F  =  (8.832+10.92)1/2 N  =  14. N
tan-1(10.9/8.83)  =  51°, a  =  14/27 m/s2  =  0.52 m/s2, same direction as the force.
(31) (a) F  =  (mc + mh)(a + g)  =  (6500 + 1200)(0.6 + 9.8) N  =  8.01×104 N
(b) T  =  mc(a + g)  =  1200(0.6 + 9.8) N  =  1.25×104 N
(33) For one car, T1  =  a×m, for two cars T2  =  a×(2m),
(where a is the acceleration of the system; i.e., any of the cars).
So the tension is twice as great in the coupling between the locomotive and the first car as compared to that between the first and second car. Note: You should draw a free body diagram for each car to better understand this result.
(35) All vectors (F's and a) are 1-D, direction in algebraic sign.
Newton's 2nd law applied to each block gives:
F + F12  =  m1 a,  F21 + F23  =  m2 a, F32  =  m3 a
where the subscript ij means ``on i by j''. Newton's 3rd law gives: F21  =  -F12, F23  =  -F32
The last 2nd law expression thus becomes: F23  =  -m3 a, and the 2nd expression becomes: -F12 + F23  =  m2 a
Thus F12  =  -(m2 + m3) a, which combines with the first to give
F - (m2 + m3) a  =  m1 a. Rearranging yields F  =  (m1 + m2 + m3) a
which is the (b) result.
Likewise, the earlier expressions give for the net force on individual blocks: (c) F3  =  F32  =  m3 a, F2  =  F21 + F23  =  (m2 + m3) a - m3 a  =  m2 a
F1  =  F + F12  =  (m1 + m2 + m3) a - (m2 +m3) a  =  m1 a
(d) The force between blocks are:
F12  =  -(m2 + m3) a
and F23  =  -m3 a
(e) a  =  96 N/(3×12 kg)  =  2.67 m/s2
F1  =  12×2.67  =  32 N,  F3  =  F2  =  F1  =  32 N
|F12|  =  2×12×2.67 N  =  64 N, F23  =  32 N
(41) ms  =  fmax/(mg)  =  8 N/(2 kg·9.8 m/s2)  =  0.41
(only if the sides and top of drawer are not touching, the usual cause for spilled contents-this problem is not realistic!)
(43) T  =  2×9.8 N  for ideal pulley  =  ms m g, ms  =  0.3
m  =  2 kg×9.8/(0.3×9.8)  =  6.7 kg
(49) a  =  m g sinq, afr  =  m g sinq - mk m g cosq
v2  =  2 a x, so v µ a1/2, vfr  =  v/2 ® afr  =  a/4
Thus sinq/4  =  sinq - mk cosq
or mk  =  3 tanq/4  =  0.4
(67) (a) a  =  F/m  =  fs,max/m  =  ms m g/m
Thus ms,min  =  a/g
(b) ms,min  =  4/9.8  =  0.41, so the chair would slide since 0.25  <  0.41.


File translated from TEX by TTH, version 1.95.
On 10 Sep 1999, 11:20.