(1) Addition of 65 kg is a force of 637 N. Thus the spring constant is k  =  637 N/0.028 m  =  2.28×104 N/m. The frequency of vibration is given by f  =  (k/m)1/2/(2p)  =  (2.28×104/1065)1/2/6.2832 Hz  =  0.74 Hz.

(3) It travels 0.25 m each quarter cycle, so the total distance traveled is 4×0.25 m  =  1.0 m.

(9) (d) The position is given by y  =  A coswt, with w  =  6.28×3 s-1 and A  =  0.15 m. (a) The velocity is given by v  =  -w A sinwt. At the equilibrium point, the velocity is maximum (sine term equals 1), so |v|  =  wA  =  18.8×0.15 m/s  =  2.8 m/s.
(b) v  =  v0 (1 - x2/A2)1/2  =  2.8 (1 - 0.12/0.152)1/2  =  2.1 m/s
(c) E  =  m v02/2  =  0.5×2.82/2  =  2.0 J.

(11) Two springs in parallel are equivalent to a single spring having twice as big a constant. Thus the frequency, being proportional to the square root of k is higher than the frequency of a single spring by 21/2  =  1.414; i.e., the frequency is given by (2 k/m)1/2/(2p)

(15) The work to compress the spring is W  =  k x2/2 which gives the spring constant, k  =  2 W/x2  =  2×3 J/(0.12 m)2  =  420 N/m. The force at 0.12 m is F  =  420 N/m×0.12 m  =  50 N. Newton's second law gives the mass, m  =  F/a  =  50 N/15 m/s2  =  3.3 kg.

(21) Momentum is conserved. Thus m v  =  (m+M)V giving v if we can find V. But V  =  wA (oscillatory system), where w  =  (k/(m+M))1/2  =  100 s-1. Thus V  =  22 m/s, giving finally v  =  22.3×0.625/.025  =  560 m/s.

(29) The period is twice the interval between ``tick'' and ``tock''; i.e., T  =  2.0 s  =  2p(l/g)1/2, which gives the length as l  =  9.8×22/4/3.14162  =  0.99 m. Stretching lengthens the period, so the clock will run slow as the result of adding the weight. (37) v  =  (B/r)1/2 for water, so use the data on p. 254 (moduli) and p. 276 (density).
(a) For water, v  =  (2×109/103)1/2  =  1400 m/s.
For the solids, B is replaced by the elastic modulus, giving
(b) For granite, v  =  (45×109/2700)1/2  =  4100 m/s.
(c) For steel, v  =  (200×109/7800)1/2  =  5100 m/s.

(39) The speed is given by the square root of the ratio of tension to mass per unit length. Thus v  =  (150 N/(0.55 kg/30 m))1/2  =  90 m/s. Thus the time between supports is t  =  30/90 s  =  0.33 s.

(45) Because of the inverse square law, the intensity at one kilometer must be larger by 502, giving 2×106×502 W/m2  =  5×109 W/m2. For an area of 10 m2, the energy rate is 5×109 ×10 W  =  5×1010 W.

(51) The harmonics are simply integer multiples of the fundamental; i.e,. 2×440 Hz  =  880 Hz, 3×440 Hz  =  1320 Hz, and 4×440 Hz  =  1760 Hz.

(59) Worked in class.


File translated from TEX by TTH, version 1.95.
On 2 Dec 1999, 13:43.