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We construct a simple approximation for the Faddeev-Popov determinant in non-abelian
gauge models by using sum rules for the density of ghost states. Values are presented for the
spectral density and for the determinant, as calculated for the SU(2) gauge model formulated on
the hypersphere §°.

1. Introduction

Wei i the hanism by which confi arises in QCD, by numerical
study of the slruclurc of the Coulomb-gauge Yang-Mills hamiltonian. An important
factor in the hamiltonian, and a crucial source of non-perturbative effects, is the
Faddeev-Popov determinant. This determinant F describes the effective density of
physical states iated with a given gauge-field litude, in other
words, with a given point in the gluon configuration space. Allowed values for the
transverse amplitudes must lie in the region bounded by the Gribov horizon, the
locus of the first zero of the determinant [1-3].

In general, evaluation of a d i is a ti ing numerical task. It
might appear, therefore, that the calculation of F could provide a serious technical
obstacle to hamiltonian methods. The problem of calculating F nonperturbatively
has recently been addressed by Schutie [4], using a cluster expansion. We describe
here a simple, direct numerical approach, which gives a quite good estimate for
values of F. We lu'sl calculale a number of the leading zeros, and then use sum rules

to the ion of the ining zeros. To ill the method, we
present values of In( F) pertaining to the SU(2) gauge model. Our numerical results
suggest the possibility that as the cut-off becomes large, zeros become

dense almost everywhere beyond the Gribov horizon.
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In the Coulomb gauge (V - 4 = 0) the scalar polcnlml @ is determined from the
color density ¢ by i ion of the G 1 ion [5,6]:

(~v*-4-v)@=0. a1

The chromoelectrostatic energy is then given by %E}O“ Lvo)s

Our method for non-perturbative i lation uses an ion in
harmonic functions defined over a finite spatial domain. We take the domain to be
the hyperspherical surface S*, which provides invariance and topological properties
which are superior to those of the more conventional cubical box [3,7]. The
expansions are cut off at a momentum index A. We expand the transverse potential
in vector harmonic functions as A(x)= L, 4,¥,(x) (the color index is implicit), and
expand @ and o in scalar harmonics. Removing some laplacian factors and using
matrix notation, eq. (1.1) becomes (1 — D) ® = o, where

D =gy Xofd, . (1.2)
¥

Here, scalar modes are labeled by greek superscripts and vector modes by greek
subscripts. The X are prod of the 3-j symbols, and
reduced matrix elements [7].

The Faddeev-Popov determinant is F=det(1 — D). It is a function only of the
variables 4, and is ind: dent of the conjug: iables, the transverse electric
field amplitudes. It is therefore possible to explore the properties of F without first
solving the Schridinger equation.

Our method provides an estimate for values of F(A) simultaneously at all points
along some line in the space of amplitudes. The direction of this line is defined by
choosing some point A4, on the line. For a fixed 4, we calculate eigenvalues d, of
the matrix D(A); the distances to zeros of F along the given line are then
determined by scaling 4, to give d,= 1. The largest of the d, is proportional to the
inverse of the distance to the Gribov horizon in the direction A, while the smallest
(most negative) gives the inverse distance in the direction —A,. We use the Lanczos
iteration method [8,9] to transform D to a tri-diagonal form. This gives rapid
convergence simultaneously to the largest and smallest eigenvalues, so that opposite
sides of the allowed Gribov domain can be effectively explored at the same time; we
typically obtain convergence for about 10 each of the leading positive and negative
eigenvalues before necdmg to be concerned with round-off errors. The distribution
of the ini igenvalues is then esti d with the aid of values for TrD*
(1 <3). To evaluate these traces, we use formulas which involve the symmetry
properties of S*. Finally, we express In(F) as an integral over the estimated spectral
function; this gives F for all amplitudes proportional to +A4,.
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2. Trace calculations
In order to write down the matrix elements and calculate traces, we need to define
a more explicit notation. The greek indices a, B, and y used above are composite
indices which include the following elements:
a={(m,n),i,s}) for a scalar representation (1s, 1s),
v={(p,q),k,u,h} fora vector representation (1 (v + k), (v —h)).
The index pairs (m, n), etc. denote the components of the SU(2) X SU(2) representa-
tions, and i, j, k are color indices for SU(n). The quantity X2# introduced in eq.
(1.2) then takes the following form:

Xogemi = (1) R (w0 5)

x(és (o+h) )(1 Yo—h)

-m P m' |\ —n q

where*

R(s,0,8) = _%[(n 1)(s'+1)(0 =5)(0=5)(s = v)(0 +1) ]"’ @2)

s(s+2)s'(s"+2)(v+1)

is a reduced matrix element (7] divided by laplacian factors from the scalar modes
[3), and o = 4(s+s’ +v+1). The f, are the SU(n) structure constants, and the
bracket symbols ( ) in eq. (2.1) are the conventional 3-j symbols. The sign factor
(—1)™*" and the minus signs in the 3-j symbols come from the complex conjugation
of the scalar harmonic functions.**

It is now straightforward to calculate the traces. The largest value of s or v

luded in a specific ical calculation (the cut-off) is denoted by A.
It is easy to check that

TeD=N=(n?-1)L(s+1)’=L(n? = 1)A(2A% + 9A +13),
;

TrD'

0. (23)
For the remaining traces, we sum over each type of index separately. The color sums

* In the course of checking the calculations reported here, we found that the formula given in eq. (29)
of ref. 7] is not correct; the factor 2 in the denominator should be omitted.
** In our numerical work, we find it useful to transform to a basis which is explicitly real. This could be
done in many ways, and the details are not important.
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involve a Casimir operator and provide a factor n; with the help also of the 3-
orthogonality relations, we obtain

TrDe= ED,..W'"'DF'"'M

s jst " Djst.is
=ng? LT, (v) Alfe Al (2.4)

where
Ty(v)= Z‘R(s,u.s‘)zlu(u+ N (2.5)

We calculate TrD? in the same way, summing over all the repeated indices, and
using the definition of 6-j symbols.

TrD* =Y Dyomnpr

npm
isge Djeke " Dicsiis

=4ngd T (=)D Al SR AR (0, B, 0!, W0, R

X(%(v'w) H(o+h) i(v"+h"))

P P P
x(%(u;h') %(uq—h) é(u’;:h"))‘ B

where

Ty(o.h o' Wo0" H) = £ R(s,0,5)R(s",0',s")R(s", 0", 5)

AR Korn) Y r)
B
o-k) Mo-h) Awr-)
e s B

3

and ( } denotes a 6-j symbol. The 3-j symbols vanish unless v + v’ + v” is odd,
which guarantees that TrD* is real.

3. Parametrization of F

We calculated eigenvalues of the matrix D for points A, which define lines in the
space of amplitudes. A sample of 128 random points was used for each value of A,
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Fig. 1. Relative separation of zeros of F.

but as in our previous calculations, the magnitudes of the 4, within the various

b were ined*. The ratios of their squares were fixed by
the following formula which approximates smoothly the results of earlier self-con-
sistent calculations with SU(2)*:

1= L 42=N,[(2W,)

a(v)
=(0+1)*+ (A2 +1)*[(v+1)?,

N, = (number of modes with momentum v) = 6v(v + 2). (10)

We g lly obtained 8 to 15 eig of each sign, which we denote as d,, or
d;_, ordered by decreasing magnitude; the two d, determine where the two rays
intersect the horizon.

Fig. 1 shows the values of the quantities 8=1-d,,,/d,. averaged over the
sample of 256 rays for each value of A, with 2<A <8. The total number of
eigenvalues is N, as given by eq. (5); M is the number between d,_ and d,,, and is

* Within each momentum subspace of dimension N,, we chose an cnsemble of vectors A with a
uniform angular distribution. To generate this ensemble, we applied to an initial vector a sequence of
random rotations.
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used in the plot because it gives nearly straight lines. The eigenvalue ratios are
consistent with §, ~ AJM“, where 8= —0.35 + 0.05, that is, with §, ~ A /A for large
A. This behavior suggests that for infinite A, zeros of F might become dense almost
everywhere beyond the horizon.

For each A4, let p(d) be the density of eigenvalues. As fig. 1 shows, the average
density is least near d, and we find a roughly linear increase as d — 0. This
suggested the following set of approximations using different values of k and m:

polx) = g%(x), x<d,_ or  x>dy,,

=0 -x/d )R (x), 0<x<d,,

=(1—x/d,_)R%(x), (s o i (11)
where
pe(x) =L [8(x—d;) +8(x—d,.)], (33)
J
RE(x)= }: Clxn. (3.4)
v=0
1.2

density

Spectral

1.0 0.8 0.6 0.4 0.2 0.0
Eigenvalue ratio

Fig. 2. Relative numbers of cigenvalues versus normalized eigenvalue. The bin widths are shown on
the figure.
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i.e., we make explicit use of the k largest and smallest eigenvalues, and use an
approximate form in between. We also require that TrD*, 0 < p<m, match the
values given in the previous section. Other expressions for the density between d,
and d,, were also tried, but the form given in eq. (3.2) was consistently best. By
considering different values of k and m, we are able to study the convergence as
more information is included.

The sum rules are

TrD*= [oh (x)x*dx. (3.5)

Via our ansatz these become a set of linear equations for the coefficients Cj, for
0 <»<m. The average densities are shown on fig. 2. For each example in our
sample of 4, we used all the explicitly known interior eigenvalues, that is, we used
the largest possible value of , but the eigenvalues d, were omitted. We have plotted
at the bin centers the integrated densities in bins of widths shown on the figure,
using the normalized variable z = x/d,. The densities for positive and negative
eigenvalues have been averaged, and divided by N —2 to provide a uniform
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Fig. 3. For the indicated values of A, In( F) is plotted against In(1 — ). The error bars indicate the r.m.s.

fluctuations in a sample of 128 directions of the A, (most of the Muctuation. especially for small u, arises
simply from variation in the horizon distance.)
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normalization. The bin widths were chosen so that the last of the explicitly-calcu-
lated eigenvalues was nearly always in the third or fourth bin. Note that the
deviation from linearity is not great.

We can now calculate In(F). Let A4 be the (signed) distance from the origin of the
gluon coordinate space along the line 4,, and let u = Ad ,. At the horizon, u=1.
Then:

mF(A):f]n(pr)p;(x)dx. (3.6)

Thus, having found the C¥, for given k and m, we can calculate In F(A4) for any A
with little effort. Fig. 3 shows the averaged results of such calculations, using m =3
and the maximum available k, plotted against In(1 — ).

To study the behavior of series of approximations, we varied & from one to about
ten (we usually obtain that many before round-off error spoils accuracy) and m
from zero to three (higher degree would require Tr D*, etc.). For each value of A < 5,
we checked our method by explicit calculation of F using a sample of 99 directions
of the A,. We find increasing accuracy for larger values of k and m, and apparent

—Log(relative error)
)
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Fig. 4. Logarithm (base 10) of the relative error in In(F) versus k. the number of cigenvalues used on

each side, for A =5 and —In(1 — u)=4 (u~ 0.98). The solid lines show the largest error, and the dashed
lines show the median error, for the indicated values of m in a sample of 99 directions of the A,,.
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Fig. 5. Logarithm of the relative error in In(F) versus In(1 — ), for k =8 and m = 3. A sample of 99
directions of the A, was used for each of the indicated values of A.

convergence. Fig. 4 shows the relative error in In(F) versus k, for A=35 and
u=1-e"*~ 0098, which was chosen as a typical expectation value in the vacuum
state. As can be seen in fig. 5, the accuracy is about the same for all relevant values
of u (i.e., neither close to the origin nor very close to the horizon). For each example
in our sample, at least 8 eigenvalues of each sign were available, and we show in fig.
5 the relative error versus In(1 — u) for k = 8.

We thank I. Barbour and H. W. Wyld for helpful advice about the Lanczos
method. This work was supported by the US Dept. of Energy under contract
DE-AC02-76ER0306.
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