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Causal sets are discrete structures consisting of points 
and causal links; they show great promise as the starting 
point for quantization of spacetime and general relativity. A 
graph is a discrete set of nodes and connecting links. A 
hypergraph is a generalized graph, wherein every subset 
of the node set may be included as an edge, which is 
analogous to a (2-node) link. A fundamental 
correspondence is presented between causal sets and 
hypergraphs. This is used to define a time index for each 
causal set point, which well-orders the set, as well as a 
spatial distance between points, which obeys the triangle 
inequality. The complete hypergraph is considered as the 
prime example. The time and spatial measures provide 
local and global structure for the corresponding causal set, 
as well as a simple derivation of the Hubble Law. 
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What is a causal set? 
 
A causal set is a set of points (labeled by α, β, γ…), together with a 
binary relation R with the following properties: 
 
R ={ordered pairs (αβ)} 
 
R is anti-symmetric: 
 

If (αβ) is in R, then (βα) is not in R. 
 

R is transitive: 
 

If (αβ) is in R and (βγ) is in R, then (αγ) is in R. 
 
R is locally finite:  
 

A point γ is said to lie between α and β if (αγ) and (γβ) are both 
in R. For every pair (αβ), at most a finite number of points lie 
between them. 

 



Physical interpretation of causal sets 
 
R determines the flow of information. If (αβ) is in R, then α precedes 
β in a logical sense, so information can move from α to β. Suppose 
there is information (a state) associated with each point of the causal 
set. Then, the state at any point β depends on the states at all points 
preceding it, i.e. all those points α such that (αβ) is in R. The state at 
α can affect the state at β, but the state at β cannot affect the state at 
α.  
 
In terms of relativity, R provides a (partial) light cone structure. 
Relative to any point α, the causal set is divided into four regions: 
 

I)     the point α itself, 
II)     the present, all points β such that neither (αβ) nor (βα), 
III) the future, all points β such that (αβ), and 
IV) the past, all points β b such that (βα). 

 
Note that R cannot distinguish between the future light cone and the 
interior of the future light cone, nor between the past light cone and 
the interior of the past light cone. This may be resolved in light of the 
correspondence between causal sets and graphs given below. 



 
What are graphs and hypergraphs? (1) 
 
A graph is a set of nodes (labeled by i, j, k … = 1 to N) together with 
links (ij) and weights w(ij). We consider only finite simple symmetric 
graphs:  the number N is finite and fixed, all weights w(ij)= 0 or 1, and 
w(ij)=w(ji). 
 
The flow of information among the nodes in a graph is based on the 
adjacency matrix, which is composed of the weights w(ij), with 
w(ii)=0. In a quantum mechanical context one may use the 
Schroedinger equation for time evolution and the Laplacian matrix for 
kinetic energy. We will not pursue this here. Instead we consider a 
generalization of the simple graph related to causal sets: the 
hypergraph. 
 
Specification of a graph consists of choosing for every pair of nodes 
either a 0 or a 1. That is the same as picking one subset of the set of 
all unordered node pairs. If a node pair is in the set, it receives a 
weight w(ij)=1, otherwise w(ij)=0.  

 



What are graphs and hypergraphs? (2) 
 
To specify a hypergraph we choose from the set of all edges of order 
N, i.e. unordered subsets of the set of N nodes. The set of edges is 
also the power set of N, P(N). Thus a hypergraph is a subset of P(N). 
Note that P(N) includes not only pairs of nodes, but also singletons 
(the nodes themselves), triples and other k-tuples where k ≤ N, as 
well as the null set and the entire set consisting of N nodes. 
 
Consider the size of these sets. A graph has N nodes. The number of 
links is N(N-1)/2. The number of edges is 2N.   To make one graph 
we must choose 0 or 1 for each link, so there are 2N(N-1)/2 possible 
graphs. To make a hypergraph we must choose 0 or 1 for each edge, 
so there are 2 to the power 2N possible hypergraphs. This is large for 
even modest values of N; a realistic value of N will turn out to be 
about 1060… 

 



Correspondence between causal sets and hypergraphs 
 
Corresponding to the relation R between causal set points is the 
relation of set inclusion between edges in the hypergraph. For any 
two edges A and B, let the corresponding points in the causal set be 
α and β. We say that A ⊆ B if A is a subset of B. Now if A ⊆ B then 
(αβ) is in R, i.e. α precedes β.  
 
This relation is anti-symmetric, locally finite (if N is finite) and 
transitive by the usual properties of set inclusion.  
 
For every hypergraph there is a unique corresponding causal set. For 
every causal set there is a class of hypergraphs that can represent it 
and a smallest value of N that will suffice. The hypergraph is not 
unique because any given node can always be accompanied by 
additional “companion” nodes; these are included in every edge that 
includes the original node. So a hypergraph is a kind of “microstate” 
and the causal set is a “macrostate.” 
 
If neither A ⊆ B nor B ⊆ A, there are two possibilities: A and B may 
have no nodes in common, or they may partially overlap. Either way 
(αβ) is not in R. Thus the hypergraphs provide an additional structure 
beyond that specified by the causal set itself.  
 



 
 
 
 



The Omega Set 
 
As an example of a causal set cosmology based on hypergraphs, we 
will use the simplest non-trivial case: the Omega Set. This is the 
causal set corresponding to the hypergraph containing every possible 
edge over N nodes. Any causal set that corresponds to a hypergraph 
over N nodes is a subset of the Omega Set. Thus it is a kind of 
“envelope” for causal sets of order N.  

 



Three Results for the Omega Set 
 
• The Cosmos is a Pancake 

 
There is a Big Bang and a Big Crunch. But maximum 
expansion is reached at a central bulge, which contains 
almost every point in the causal set. This is a very thin space-
like sheet, 5x1017s (15 billion light years) in diameter and 
about 2x10-13s thick. 
 
This interval neatly splits fundamental interactions: 
strong and electromagnetic forces act over shorter time scales 
(TQCD < 10-22s, TQED ~ 10-14s–10-20s),  
while weak forces take longer to act (Tweak > 10-13s). 
This may be related to electro-weak symmetry breaking. 
 

•  The Local Structure is quasi-Galilean 
 
This is true not just for the Omega set, but for any causal set 
generated in this way. Relative to any point in the causal set 
there are points in its future and/or past light cones and 
space-like points. However there are no points in the interior 
of either the past or future light cone. This suggests an 
external parameter should be used to represent normal time 
evolution, rather than the causal direction internal to the 
cosmology.  
 

• The Hubble Law is Observed 
 
(Almost) All points are in the central bulge, hence this is the 
generic residence of an astronomical observer. From this 
point of view, the Hubble Law of recession velocities holds, 
either exactly or approximately. Deviations from the Hubble 
Law can be controlled by the choice of a specific causal set 
chosen within the Omega Set “envelope.” 



Time index: global shape and central bulge 
 
We denote by the same symbol an edge and the number of nodes in 
that edge. So A is the number of nodes in the edge A. We define the 
time index of the causal set point α as the number A, an integer: 
k(α)=A. This provides a well-ordering of the causal set points. Thus 
the causal set is composed of a number of space slices, labeled by 
k=0,1,2 … N. 
 
To see the shape of the causal set, consider the number of points in 
any given slice. For the kth slice, this is the binomial coefficient (N, k). 
For a large number N, this means that almost all the points are 
concentrated in a region of time index thickness ~sqrt(N). So there is 
a central bulge where almost all points can be found, with k=N/2; the 
causal set is “sparse” elsewhere. 
 
The required value of N can be estimated as follows. Assume 
adjacent time slices are separated by tP, the Planck time. Since 
almost all points are found in the central bulge, assume that 
corresponds to the present age of the universe, tnow. It follows that 
N/2 = tnow/tP. The thickness of the central bulge is therefore 
approximately tthick=sqrt(N) tP: 
 

tP = 5.3x10-44s 
tnow= 15 billion years = 4.7x1017s 
N = 18x1060,  sqrt(N) = 4.2x1030

tthick= sqrt(N) tP = sqrt(2tnowtP) = 2.2x10-13s. 
 
Compare this to the fundamental interaction time scales: 
 

TQCD ~ 10-22s < tthick, 
TQED ~ (10-14s–10-20s) < tthick, 

but   Tweak ~ 10-13s ~ tthick. 
 
This may be related to electro-weak symmetry breaking. 



 
 



Distance measure: triangle inequality and local shape 
 
For any two edges A and B we define a distance by  
 

d(AB) = U(AB)-I(AB) = A+B-I, 
 

where U(AB)=A∪B is their union and I(AB)=A∩B is their intersection. 
For two identical edges this would be zero; for two non-overlapping 
edges this is A+B. (See elsewhere for a proof of the Triangle Inequality.) 
 
This provides a diameter for the causal set, for any time index k: 
D(k)=2k if k≤N/2 but D(k)=N-2k if k≥N/2. Thus the universe begins at 
k=0 with zero diameter, expands up to the present time and achieves 
maximal diameter N for k=N/2, and then contracts until it reaches 
zero diameter for k=N. 
 
Now consider the analogue to the relativistic invariant s2=Δt2-Δx2. For 
edges A and B, use Δt=B-A and Δx=A+B-I, where A≤B: 
 
s2 = Δt2-Δx2  = (A-B)2-(A+B-I)2  
    = 2I(A+B)-4AB ≤ 2A(A+B)-4AB, using I≤A 
    ≤ 2A(B+B)-4AB = 0, so 
s2 ≤ 0. 
 
We get s2=0 by choosing A ⊆ B, whence Δx=B-A and Δt=B-A. So the 
subsets of any edge B are in the past light cone of the point β. There 
are no points in the future or past light cone interiors of β, but there 
are usually points in its present. The Big Bang (k=0) has all other 
points in its future light cone. The Big Crunch (k=N) has all other 
points in its past light cone. All other points have some points in their 
light cones and some points in their present. This may suggest that 
the causal direction internal to the cosmology is “suspect” as a 
conventional time evolution parameter.  



 



 



The Hubble Law 
 
To derive the Hubble Law, consider two edges A and B such that α is 
in the past light cone of β, or A ⊆ B: A is the source and B is the 
observer. We note that U=B, I=A and d=B-A. The (current) age of the 
universe is B; this is also the maximum distance one can observe. 
The fractional distance of the source is therefore ρ=(B-A)/B.  
 
One approach is to make an ad-hoc definition of the recession 
velocity:  

v(AB) = 1-I(AB)/U(AB) = (U-I)/U ∈ {0,1}. 
 

Since A ⊆ B, we get v = (B-A)/B = ρ. If we follow Hubble and say that 
v=Hd, we can see that H=1/B. This is constant for a given observer 
B, and equal to the inverse of the (current) age of the universe.  
 
Alternately, compare the scale factors of the universe, RB at time B 
and RA at time A. Their ratio represents the dilation factor for light of 
wavelength λ traveling from A to B: λB/λA=RB/RA. Using the 
(incorrect!) classical Doppler shift formula with moving source and 
stationary observer we again get we get v=ρ. If we use the (correct!) 
relativistic formula we get something similar: 
 

v=ρ(2- ρ)/[2- ρ(2- ρ)]. 
 
This agrees with the classical result for small distances, but is larger 
for large distances; it runs counter to the accelerating universe data. 
(See elsewhere for a graph of v vs. ρ)…  But deviations from the Hubble 
Law can be controlled by the choice of a specific causal set chosen 
within the Omega Set “envelope.” 



Outlook for Future Work 
 
Beyond the Omega Set
 

The OS is a complete hypergraph. Other possible causal sets are 
reached by deleting edges, but how should this be done? If the graph 
itself is not a complete graph, the nodes may be grouped into well-
connected clusters (cliques). These correspond to points on the 
causal set, which is a subset of the OS and represents a different 
cosmology. 
 
Quantum Field on the Graph  
 

Consider a binary field on the graph nodes. Every edge 
corresponds to a classical state, a basis vector in the quantum state 
space, and a subspace spanned by subsets of that edge. A unique 
Hilbert space can thus be assigned to each point in the causal set, 
and this “covers” all the Hilbert spaces in the past light cone in a 
natural way; thus quantum information can flow in the causal set. 
 
The Role of Quantum Observers 
 

The links in the graph are abstract but always denote relations 
between the nodes. A link may be viewed as a distance between two 
space elements or as a relation between two quantum observers, 
which are represented by vectors in a generic Hilbert space. 
Generalizing the simple graph slightly, each link is the inner product 
of two such vectors; this allows an alternate, complementary 
description of the universe using quantum states rather than 
spacetime. 

 


